Education

SUBJECT and GRADE	Mathematics Grade 11			
TERM 3	Week 3			
TOPIC	Functions and Graphs: Finding the equation of functions			
AIMS OF LESSON	- To find the equation of the Parabola, hyperbola and exponential functions if graph is given.			
RESOURCES	Paper based resources	Digital resources		
	Please go to the Functions and Graphs section in your Mathematics Textbook.	Parabola: https://www.youtube.com/watch?v=5yecNfFyvF8 Hyperbola: https://www.youtube.com/watch?v=Mx9-3WqFV6c Exponential: https://www.youtube.com/watch?v=YYNYc6HP6sk https://www.youtube.com/watch? v=vmFiraM8qTw		
INTRODUCTION	By now you should have dealt with the parabola, hyperbola and the exponential functions where you have sketched the functions and made deductions from the sketches. In this lesson we will determine the equations of the mentioned functions. Recall: the general form for the, - parabola: $y=a x^{2}+b x+c$ and the turning point form: $y=a(x+p)^{2}+q$, where $(-p ; q)$ are the coordinates of the turning point. Note: when we determine the x-intercepts/ roots, we use: $y=a\left(x-x_{1}\right)\left(x-x_{2}\right)$ where x_{1} and x_{2} are the roots of the parabola. - hyperbola: $y=\frac{a}{x+p}+q$ where $x=-p$ and $y=q$ are the equations of the asymptotes of the hyperbola. - exponential function: $y=a . b^{x}+q$ where $y=q$ is the equation of the asymptote of the exponential function.			
CONCEPTS AND SKILLS				
LESSON 1: TO DETERMINE THE EQUATION OF A GIVEN PARABOLA				
Example 1: Determine th Solution: $y=a\left(x-x_{1}\right)\left(x-x_{2}\right)$ Substitute $\boldsymbol{x}_{1}=\mathbf{- 2}$ and $\begin{aligned} \therefore y & =a[x-(-2)][x- \\ & =a(x+2)(x-3) \end{aligned}$ Now determine the value into (1): $y=a(x+2)(x$ $\begin{aligned} & \therefore-\mathbf{6}=a(\mathbf{0}+2)(\mathbf{0} \\ & \therefore-6=a(-6) \Rightarrow a \end{aligned}$ \therefore equation: $y=1(x+$	tion of the given parabola. 2 Roots and another point are given: use $y=a\left(x-x_{1}\right)\left(x-x_{2}\right)$ y substituting the point $(0 ;-6)$ $x=0 ; y=$ $-3)=x^{2}-x-6$		CAN YOU? 1. Determine the given below. Answer: $y=-2 x^{2}+2$	on of the parabola

Example 2: Determine the equation of the given parabola.

Solution:

$y=a(x+p)^{2}+q$
Substitute $-p=1 \Rightarrow \boldsymbol{p}=\mathbf{- 1}$ and $\boldsymbol{q}=\mathbf{4}$
$\therefore y=a(x-1)^{2}+4 \ldots$ (1)
Determine the value of a by substituting the point $(\mathbf{2} ; \mathbf{- 1})$

$$
\text { into (1): } \begin{aligned}
& y=a(x-1)^{2}+4 \\
\therefore-\mathbf{1} & =a[(2)-1]^{2}+4 \\
\therefore-1 & =a[1]^{2}+4 \\
\therefore-1 & -4=\boldsymbol{a}=-\mathbf{5}
\end{aligned}
$$

\therefore equation: $y=-5(x-1)^{2}+4 \quad$ OR $\quad y=-5 x^{2}+10 x-1$
Take note of the different forms of the equivalent equation

Do Exercises form your Textbook: Finding equation of Parabola

LESSON 2: TO DETERMINE THE EQUATION OF A GIVEN HYPERBOLA

Example 3: Determine the equation of the hyperbola in the diagram:

Solution:

$y=\frac{a}{x+p}+q$
Substitute $-p=2 \Rightarrow \boldsymbol{p}=\mathbf{- 2}$ and $\boldsymbol{q}=\mathbf{1}$

$$
\therefore y=\frac{a}{x-2}+1
$$

Determine the value of \boldsymbol{a} by substituting the point $(\mathbf{4} ; \mathbf{4})$
into(1) : $y=\frac{a}{x-2}+1$

$$
\begin{aligned}
& \therefore 4=\frac{a}{4-2}+1 \\
& \therefore 4=\frac{a}{2}+1 \\
& \therefore 3=\frac{a}{2} \\
& \therefore 6=a \Rightarrow \text { Equation: } y=\frac{6}{x-2}+1
\end{aligned}
$$

The equations of the asymptotes are, $x=2$ and $\mathrm{y}=1$

Do Exercises from your Textbook: Finding equation of hyperbola

Determine the equation of the parabola given below in the form, $y=a(x+p)^{2}+q$.

Answer: $\quad y=\frac{1}{2}(x-2)^{2}-3$

SON 3: TO DETERMI	UATION OF	NENTIA	CTION	
Example 4: Determine the equation of the exponential function below: Solution: $\therefore y=a \cdot b^{x}+4 \ldots \text { (1) }$ Substitute the y-intercept $(0 ; 2)$ into (1) to determine a $\begin{aligned} \therefore \mathbf{2} & =a \cdot b^{\mathbf{0}}+4 \\ \therefore 2 & =a \cdot 1+4 \\ \therefore-2 & =a \Rightarrow y=-2 . b^{x}+4 \ldots \text { (2) } \end{aligned}$ Substitute the point $(1 ;-2)$ into (2) to determine \boldsymbol{b} $\begin{aligned} \therefore-\mathbf{2} & =-2 \cdot b^{1}+4 \\ \therefore-6 & =-2 . b \\ \therefore 3 & =b \end{aligned}$ Equation: $y=-2.3^{x}+4$				CAN YOU? Determine the equation of the following exponential function Revise exponential laws Answer: $y=6.3^{x}-1$ OR $y=2.3^{x+1}-1$
ACTIVITIES/ASSESSMENT	Mind Action Series Ch 4 Pg: 63/64; 66/67; 71/73 and 78-80	Platinum Topic 5 Pg. 90-91; 98-99; 104-105; 106- 109; 114-115	Classroom Mathemati Ch 5 Pg: 109-112; 118-124; 125-131	Everything Mathematics Ch 5 Pg: 161-163; 181-183 and 191-196
CONSOLIDATION	Parabola: - If roots and a point a. - If turning point and substitute other poin Hyperbola: - Use $y=\frac{a}{x+p}+q$ Exponential function: - Use $y=a . b^{x}+q$ determine b (if not	given; use $y=a(x$ ther point are given, determine a. $\text { re } x=-p \text { and } y=$ ere $y=q$ is the eq $n)$.	$\left.x_{1}\right)\left(x-x_{2}\right)$ where x_{1} $\text { se } y=a(x+p)^{2}+q w$ are the equations of the a tion of the asymptote; sub	$d x_{2}$ are the roots; substitute other point to determine here $(-p ; q)$ are the coordinates of the turning point; symptotes; substitute other point to determine a. stitute y-intercept to determine a and another point to

